Statistical inferences of linear forms for noisy matrix completion
نویسندگان
چکیده
منابع مشابه
Matrix Completion from Noisy Entries
Given a matrix M of low-rank, we consider the problem of reconstructing it from noisy observations of a small, random subset of its entries. The problem arises in a variety of applications, from collaborative filtering (the ‘Netflix problem’) to structure-from-motion and positioning. We study a low complexity algorithm introduced in [KMO09], based on a combination of spectral techniques and man...
متن کاملImage Tag Completion by Noisy Matrix Recovery
It is now generally recognized that user-provided image tags are incomplete and noisy. In this study, we focus on the problem of tag completion that aims to simultaneously enrich the missing tags and remove noisy tags. The novel component of the proposed framework is a noisy matrix recovery algorithm. It assumes that the observed tags are independently sampled from an unknown tag matrix and our...
متن کاملMatrix Completion with Noisy Side Information
We study the matrix completion problem with side information. Side information has been considered in several matrix completion applications, and has been empirically shown to be useful in many cases. Recently, researchers studied the effect of side information for matrix completion from a theoretical viewpoint, showing that sample complexity can be significantly reduced given completely clean ...
متن کاملNoisy Matrix Completion Using Alternating Minimization
The task of matrix completion involves estimating the entries of a matrix, M ∈ Rm×n, when a subset, Ω ⊂ {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} of the entries are observed. A particular set of low rank models for this task approximate the matrix as a product of two low rank matrices, M̂ = UV T , where U ∈ Rm×k and V ∈ Rn×k and k min{m,n}. A popular algorithm of choice in practice for recovering M from t...
متن کاملMatrix Completion with Noisy Entries and Outliers
This paper considers the problem of matrix completion when the observed entries are noisy and contain outliers. It begins with introducing a new optimization criterion for which the recovered matrix is defined as its solution. This criterion uses the celebrated Huber function from the robust statistics literature to downweigh the effects of outliers. A practical algorithm is developed to solve ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
سال: 2020
ISSN: 1369-7412,1467-9868
DOI: 10.1111/rssb.12400